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Abstract

We propose a new theoretical framework of deterministic processes of tra�c as-
signment able to include day-to-day correlation of the random terms. According to
the prevailing interpretation of random utility models, random terms are regarded as
individual speci�c. Correlation is justi�ed by persistence of habits and unobservables.
The framework includes the deterministic sequence of systematic utilities based on a
learning �lter, the stochastic process of the random terms based on a stationary au-
toregressive structure with i.i.d. Gumbel or multivariate normal one-day marginals,
and the resulting stochastic process of choice which generally is not Markov. The �xed
point states of the choice process are the classical logit and probit Stochastic User
Equilibrium (SUE). The linkage between �ows at any day and transition �ows is made
explicit, and, by this, a new perspective on the interpretation of SUE is opened. SUE
is the condition where, at macro level, the observed route �ows do not change across
days, while, at micro level, individuals change route. Only if random terms are un-
changed no individual changes route. Transition �ows at SUE are symmetric, i.e. the
number of shifters from path i to path j equals the number of shifters from path j to
path i. The insights are illustrated by numerical examples related to a two-link and a
�ve-link network.

Keywords: tra�c assignment; deterministic process; stochastic user equilibrium;
extremal process; Gaussian process; logit; probit.
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1 Introduction

Day-to-day dynamics, whereby the evolution over days of travel choice and tra�c conges-
tion is linked through a learning model based on driver's past experience, has attracted
considerable attention in the last decades. Day-to-day dynamics can be formulated within
a continuous and a discrete time framework (Cantarella and Watling, 2016a, have recently
provided a unifying framework), the latter only is considered in this paper.

Deterministic processes were the �rst to be tackled. A distinctive feature is that route
�ows are regarded as deterministic variables. After the initial contribution by Horowitz
(1984), research has dealt, in particular, with the relationship with Stochastic User Equi-
librium (SUE) and stability analysis (Cantarella, 1993; Watling, 1999; Watling and Hazel-
ton, 2003; Bie and Lo, 2010; Zhao and Orosz, 2014; Xiao and Lo, 2015; Cantarella and
Watling, 2016b; Guo and Huang, 2016). The solutions of the �xed point problem termed
SUE, including logit and probit SUE, are the �xed point states of the assignment process.
A slightly di�erent approach has been developed by Guo et al. (2013) who consider the
link �ow dynamics in lieu of the route �ow dynamics.

Other authors have considered route �ows as stochastic variables. This alternative as-
sumption can be justi�ed on di�erent grounds as discussed in Watling (2002a). One of the
approaches followed is that of stochastic processes, which considers the day-to-day evolution
of the probability distribution of route �ows regarded as integer variables (Cascetta, 1989;
Davis and Nihan, 1993; Cantarella and Cascetta, 1995; Watling, 1996; Watling and Hazel-
ton, 2003; Hazelton and Watling, 2004; Watling and Cantarella, 2015; Parry et al., 2016).
The other approach is the generalisation of SUE proposed by Watling (2002a, 2002b), in
which stochasticity in both �ows and costs is endogenous to the equilibration process.

The present paper deals with deterministic processes. The paper aims to formulate
a theory of deterministic assignment processes able to take explicitly into account the
day-to-day correlation of the random terms of the route choice model, and to derive a
characterisation of SUE within this theory.

Since Daganzo and She� (1977), SUE has been used for its potential to overcome the
perfect knowledge assumption of classical Deterministic User Equilibrium (DUE) derived
from Wardrop's �rst principle (Wardrop, 1952). Imperfect knowledge of the network, as
it occurs in the absence of Advanced Traveller Information Systems (ATIS), and the asso-
ciated heterogeneity in the perception of route travel times justify SUE providing strictly
positive �ows for all routes. A number of contributions have tackled formulation and algo-
rithmic aspects for SUE, many others have used SUE for applications without and with the
presence of ATIS (having assumed the perception variance to be related to the information
quality), or proposed extensions to SUE. SUE is directly formulated as �xed-point problem,
equivalence has been proved with minimisation and variational-inequality problems (see,
respectively, Fisk, 1980, and Lo and Szeto, 2001). It is beyond the scope of the paper to
provide a full account of literature related to algorithmic aspects, applications and exten-
sions of SUE. To name a few, Powell and She� (1982) and Liu et al. (2009) on the Method
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of Successive Averages (MSA). Nielsen et al. (2002) for a wide-scale application, Huang and
Li (2007) and Huang et al. (2011) for applications in the presence of ATIS, Fan and Liu
(2010) on network protection. Uchida et al. (2007) on extension to multimodal route choice,
Unnikrishnan and Waller (2009) on extension to en-route choices, Karoonsoontawong and
Lin (2015) on combined destination and route choices.

The research here is motivated by the desire to address a few limitations of the classi-
cal framework of assignment processes (a comprehensive presentation is in Cantarella and
Cascetta, 1995; see Appendix 1 of the present paper for a formal review of the relevant
assumptions). This framework builds on the formulation of a choice updating process with
an implicit Markovian assumption. Probabilities of choosing a path at a given day condi-
tional on the choice of the path in the previous day are at the cornerstone of the framework
(these probabilities are called transition probabilities and the associated matrix transition
matrix). The Markov assumption makes it possible to derive the probability of the se-
quence of choices. Based on Markov chain theory (Norris, 1997), sequence probabilities
are given by a product of conditional probabilities (factoring property). In addition, in the
classical framework of day-to-day dynamics, conditional probabilities are usually assumed
to be independent of the path chosen the previous day. This eventually implies day-to-day
independence of the random terms and no state dependence of the systematic utilities.

The random term independence assumption is discussed in Watling and Hazelton (2003)
and Watling and Cantarella (2013). They observe that the assumption is somewhat unre-
alistic as one may expect that traveller's personal preferences for a particular route would
persist from day to day. They remark that di�erent approaches have been proposed to deal
with this problem. Watling and Cantarella (2013) discuss, in particular, proportional re-
routing, whereby, based on an exponential �lter, only a fraction of travellers re-route each
day according to the choice model. This approach is found in several papers (Cantarella,
1993; Cantarella and Cascetta, 1995; Hazelton and Polak, 1997; Polak and Hazelton, 1998;
Cantarella and Watling, 2016b). Another approach, suggested by Polak and Hazelton
(1998), considers that re-routing occurs only if the traveller perceives an alternative that
has utility at least s units higher than her present route. This approach has similarities
with state-dependence, whereby the systematic utility of the present route is assigned an
extra-utility to represent the additional psychological cost of switching, as in the model by
Cascetta and Cantarella (1991).

The framework that is proposed in the present paper moves a step backwards: instead
of starting from a choice updating model with an implicit Markovian assumption, it models
the random term day-to-day updating process that occurs together with the adjustment of
systematic utilities. It then derives the consequent choice process which, in general, is not
Markov1.

1Numerical tests by the author have con�rmed that, for general correlation patterns of the random
terms, choice sequence probabilities do not satisfy the factoring property, which is a necessary and su�cient
condition of Markov chains. Dagsvik (1983, 1988) appears to be the only who has investigated discrete
choice processes. He �nds conditions on the utility process that guarantee that the attendant choice process
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The random term updating process is able to deal with habit persistence, because it
assumes day-to-day statistical dependence. The prevailing interpretation of random utility
models regards the random terms as individual speci�c, i.e. random terms account for
inter-personal heterogeneity (since McFadden, 1981). Each individual, when faced with
a sequence of choices, may change her random term vector. Independence across choices
is an un-necessarily restrictive assumption, since some degree of serial correlation is likely
to exist because of temporally persistent unobservables and tastes. At the other extreme,
we have the perfect correlation assumption, whereby random terms are unchanged across
choices. Realistically, day-to-day correlation will lie somewhere between independence and
perfect correlation.

Day-to-day dependence of the random terms has impacts on the joint probability, i.e.
the probability of choosing alternative i the day before and alternative j the day after.
We will refer to this probability as transition, or switching, probability, consistently with
the convention adopted in discrete choice literature, in particular by De Palma and Kilani
(2005, 2011).

Transition probabilities in discrete choice models are investigated in a stream of re-
search that is ultimately concerned with the implications on welfare measures. De Palma
and Kilani (2005 and 2011) provide analytic functional forms of transition probabilities, for
logit and general random utility models, under the assumption that random terms remain
unchanged. Delle Site and Salucci (2013) extend the framework provided in De Palma and
Kilani (2011) to imperfect before-after correlation and review numerical methods for com-
putation. In a subsequent paper, Delle Site and Salucci (2015) provide analytic functional
forms of transition probabilities for general day-to-day correlation patterns in the case of
logit.

In the conventional day-to-day dynamics framework, when conditional probabilities are
assumed independent of the choice made in the previous day, re-routing is quanti�ed by
transition probabilities given, in the light of the independence assumption, simply by the
product of the probability of choosing alternative i the day before times the probability of
choosing alternative j the day after. Transition probabilities have a di�erent value if the
independence-across-days assumption is removed.

The paper recasts the theoretical framework of deterministic processes. At the lower
level, we have the sequence of systematic utilities, based on the learning �lter, and the
stationary stochastic process of the random terms. The paper will show di�erent options
that can be used to de�ne this stochastic process. These will allow to derive logit and probit
SUE from the new framework. At the upper level, as a consequence of the lower levels, we
have the stochastic process of route choice which gives rise to route �ows.

The paper presents this new framework and shows the noteworthy implications in terms
of interpretation of classical logit and probit SUE. Transition probabilities play a key role in
this respect. The organisation is as follows. Section 2 presents notation and assumptions.

is Markov.
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Section 3 presents the consequent properties of assignment processes and the derivation of
SUE. Section 4 provides two illustrative numerical examples.

2 Notation and assumptions

2.1 Network assumptions

Let G = (N,A) be a strongly connected transportation network, with N and A being,
respectively, the set of nodes and directed links. Let a be the link index. Origins (O)
and destinations (D) constitute a subset of N . Let r=1,...,R be the OD pair index. Let
i = 1, ..., Jr be the index of simple paths (routes) of OD pair r.

For each path i = 1, ..., Jr, r=1,...,R, F ri denotes the corresponding path �ow. We
denote by za the �ow on link a ∈ A. The link �ows are obtained from the path �ows by:

za =
R∑
r=1

Jr∑
i=1

δi,ra · F ri a ∈ A (1)

where δi,ra is the element of the link-path incidence matrix whose value is 1 if path i of
OD pair r includes link a, is 0 otherwise.

The demand �ow of OD pair r is denoted by qr.We have the demand constraints:

qr =

Jr∑
i=1

F ri r = 1, ..., R (2)

The feasible path �ows are all the non-negative F ri satisfying the demand constraints.
Let T ri denote the travel time on path i of OD pair r. Let Ta denote the travel time on

link a. The link travel times are continuous functions of the link �ows: Ta = Ta (za, a ∈ A).
The path travel times are obtained from the link travel times by the standard link-additive
model:

T ri =
∑
a∈A

δi,ra · Ta (za, a ∈ A) i = 1, ..., Jr, r = 1, ..., R (3)

2.2 Behavioural assumptions

At day tn, the individuals of each OD pair perceive a utility uri (tn) on each path. This path
utility is a random variable given by the sum of a systematic, i.e. deterministic, component
vri (tn) and a random term εri (tn):

uri (tn) = vri (tn) + εri (tn) i = 1, ..., Jr r = 1, ..., R (4)

The random terms summarise factors that are unobserved by the modeller. The random
terms are interpreted as individual speci�c, thus accounting for inter-individual variability.
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For ease of notation we omit the individual index. They are subject to day-to-day variability
according to the continuous state space vector stochastic process:

εri (t1) , ..., ε
r
i (tn) i = 1, ..., Jr r = 1, ..., R (5)

The choice is made on the basis of the utilities. Therefore, the path alternative Ir (tn)
that is selected at day tn is a random variable, because the utilities are random. The
selected alternative is subject to day-to-day variability according to the discrete state space
stochastic process:

Ir (t1) , ...,I
r (tn) r = 1, ..., R (6)

We have three behavioural assumptions: the �rst relates to the systematic utility updat-
ing model, the second to the random term updating model, the third to the choice model.
This is illustrated diagrammatically in Figure 1.

2.2.1 Systematic utilities

Assumption A1 - Systematic utility updating model. The path systematic utility de-

pends on two attributes: a component related to the travel times experienced in the previous

day, and a component related to the monetary cost paid to use the path:

vri (tn) = βT · T ri (tn−1) + βC · Cri (7)

where βT , βC are estimation coe�cients. The experienced travel time is deterministic

and dependent on link �ows obtained from path �ows:

T ri (tn−1) = ωri (F ri (tn−1), i = 1, ..J, r = 1, ..R) i = 1, ..., J ; r = 1, ..., R (8)

The assumption assumes that users are not provided with real-time information.
Based on assumption A1, systematic utilities are characterised by a deterministic se-

quence, because �ows F ri (tn) are regarded as deterministic quantities.

2.2.2 Random terms

We assume for the random terms a strictly stationary2 autoregressive structure whereby,
consistently with the systematic utility updating model, the random term at day tn is
obtained from the combination of the random term at day tn−1 and of an independent
random term.

Stationarity is a reasonable approximation of the real behaviour when the phenomenon
evolves smoothly rather than by abrupt changes. The assumption is also motivated by

2In words, strict stationarity refers to the condition where the distribution across one or more consecutive
days is invariant with respect to time axis translations.
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the need for maintaining consistency with the classical framework of assignment processes
which postulates a time-homogeneous one-day marginal distribution.

The mathematical operators involved in the combination depend on the one-day marginal
distribution that is postulated. We show hereafter that the operator is the maximum func-
tion for a i.i.d. Gumbel marginal (the one of the logit model), and it is the sum for a
multivariate normal marginal with general variance-covariance matrix (the one of the pro-
bit model).

The distribution of the random terms over a single day are of interest for the compu-
tation of path choice probabilities. The logit model is of interest mainly because of the
closed-form probabilities. The independence across alternatives assumption is a limitation
in the light of overlapping routes. However, it is possible to deal with this problem by
appropriately modifying the systematic part of the utility, as in the c-logit model proposed
by Cascetta et al. (1996), and the path-size logit proposed by Ben-Akiva and Bierlaire
(1999). The probit model requires simulation to compute choice probabilities, but it is able
to represent the similarity occurring in overlapping routes at the level of the random terms
by appropriately structuring the variance-covariance matrix.

In the following parts of this section we omit for ease of notation the OD pair index.

Assumption A2a - Random term updating model, extremal vector process. The

vector stochastic process of the random terms over consecutive days is strictly stationary with

marginal distribution at any given day i.i.d. Gumbel; for each alternative independently,

the error term εi(tn) is generated according to the autoregressive structure:

εi(tn) = max {εi(tn−1) + lnφ; ε̃i (tn) + ln (1− φ)} i = 1, ..J (9)

where ε̃i(tn) is a standard Gumbel distributed variable3, generated independently from

εi(tn−1), and 0 ≤ φ ≤ 1 is a parameter controlling day-to-day correlation.
This stationary stochastic process was investigated in a number of papers by Tiago de

Oliveira (a review is in Tiago de Oliveira, 1980). We summarise hereafter a few properties
whose proofs can be found in the literature.

The process has a standard Gumbel one-day marginal (recall the max-stability of the
Gumbel distribution). The associated distribution of the random terms over two consecutive
days is the so-called bi-extremal distribution. The bi-extremal distribution is also referred
to as bivariate Gumbel Type C (Kotz et al., 2000). The cumulative distribution function
(c.d.f.) is:

Hεin−1
εin [εi(tn−1), εi(tn)] = exp(−max[exp

(
−εi(tn−1)

)
+ (1− φ) · exp (−εi(tn)) ; exp (−εi(tn))]) i = 1, ..J (10)

3A standard Gumbel has mean equal to γ, the Euler constant, and standard deviation equal to π/
√
6.
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The Pearson's product-moment correlation coe�cient ρ is given by:

ρ (φ) = − 6

π2
·
∫ φ

0

ln s

1− s
ds (11)

The values of φ for given ρ are obtained from solving eqn (11). In particular, for ρ = 0
we have φ = 0, and for ρ = 1 we have φ = 1.

From eqn (9), as it is immediately veri�ed, when ρ = 0, i.e. zero correlation, we have
that εi(tn−1) and εi(tn) are independent. This is because, in eqn (9), as φ approaches
zero from the right the limit of lnφ is −∞. When ρ = 1, i.e. perfect correlation, we have
εi(tn−1) = εi(tn). This is because, in eqn (9), as φ approaches one from the left the limit
of ln(1− φ) is −∞.

The c.d.f. in eqn (10) is non di�erentiable, therefore to obtain the probability density
function (p.d.f.) appropriate partitioning of the space is needed. The joint distribution of
the two vectors εi(tn−1) and εi(tn), i = 1, ..J , will be obtained on the basis of statistical
independence across alternatives, i.e. the c.d.f. and p.d.f. are simply given by the product
of the bivariate alternative-speci�c c.d.f and p.d.f..

The bi-extremal distribution is characterised by a particular interpretation when the
random terms are regarded as individual speci�c. Consider a population of individuals
with identical systematic part of the utilities. Based on eqn (9), there is an individual-
speci�c minimum perception error in each choice pair equal to τi = εi(tn−1) + lnφ. In fact,
at day tn, the perception error is never lower than τi. At day tn−1, the perception error is
εi(tn−1) > τi because the logarithm of φ is negative when φ ∈ [0, 1].

Figure 2, 3 and 4 show the day-to-day univariate random process de�ned by eqns (9)
for three values of the parameter φ controlling day-to-day correlation (φ = 0, 0.5, 1).

Assumption A2b - Random term updating model, Gaussian vector process. The

vector stochastic process of the random terms over consecutive days is strictly stationary

with marginal (joint) distribution at any given day multivariate normal; for each alternative,

the error term εi(tn) is generated according to the autoregressive structure:

εi (tn) = ρ · εi (tn−1) +
√

1− ρ2 · ε̃i (tn) i = 1, ..J (12)

where the vector εi (tn−1), i = 1, ..J , is multivariate normal with zero means, unit

variances and variance-covariance matrix Ξ, the vector εi (tn−1) , i = 1, ..J , and the vector

ε̃i (tn) i = 1, ..J, are independent4, the vector ε̃i (tn) , i = 1, ..J , is multivariate normal with

zero means, unit variances and variance-covariance matrix Ξ and is independent across

days, ρ is the within-alternative day-to-day correlation coe�cient.
It can be proved that, with this structure, the vector εi (tn), i = 1, ..., J , of the error

terms at day tn and the vector εi (tn−1), i = 1, ..., J , of the error terms at day tn−1 have

4We recall that if two vectors of random variables are independent, the respective components are
pairwise independent.
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an identical marginal (joint) distribution. The proof consists in showing that both the
normal random vectors have identical variance-covariance matrix Ξ. The following lemma
known from the theory of Gaussian random vectors (Brockwell and Davis, 1991) needs to
be applied: let X be a n-dimensional normal random vector with means µ and variance-
covariance matrix Υ; if C is an m × n matrix, then C·X is normal with means C·µ and
variance-covariance matrix C ·Υ · C ′.

Notice that the stationarity of the vector process de�ned in eqns (12) does not require
independence across path alternatives but holds for any pattern of correlation de�ned in
the variance-covariance matrix Ξ. Notice also that all three vectors εi (tn), εi (tn−1) and
ε̃i (tn) , i = 1, ..J , have the same variance-covariance matrix Ξ.

The procedure to obtain draws from a multivariate normal is as follows (Scheuer and
Stoller, 1962). LetX have a multivariate normal distribution with zero means and variance-
covariance matrix Υ. Let the lower triangular matrix L be obtained by the Cholesky
decomposition L · L′ = Υ. Then, given the random vector Z with independent standard
normal components, the draws of X are obtained using the transformation: X = L · Z.

Figure 5, 6 and 7 show the day-to-day univariate random process de�ned by eqns (12)
for three values of the day-to-day correlation coe�cient ρ (ρ = 0, 0.5, 1).

2.2.3 Choice

Assumption A3 - Choice model. At any given day, each user selects the path Ir (tn)
with the highest perceived utility:

Ir (tn) : urI (tn) = max
i=1,...,Jr

uri (tn) r = 1, ..., R (13)

The stochastic process at the level of choice is characterised statistically by a probability
mass function (p.m.f.) which is consequence of the assumptions A1, A2a or A2b, and A3.

The p.m.f. can be de�ned with reference to the choice at a given day, the choices in two
consecutive days, the choices over n > 2 consecutive days.

Computation of probabilities, transition probabilities and sequence probabilities is equiv-
alent to evaluation of the probability measure of sets, representing events, in the space of
the random terms. This follows from the set-theoretic approach to probability introduced
by Kolmogorov (1956). Generally, as mentioned in the introduction, these probabilities do
not satisfy the Markov property.

The probability of selecting alternative in at day tn is:

P rin = P (Ir (tn) = in) = P
(
Srin
)

r = 1, ..., R (14)

the transition probability, i.e. the probability of selecting alternative in−1 at day tn−1
and alternative in at day tn is:

P rin−1in = P (Ir (tn−1) = in−1, I
r (tn) = in) = P

(
Srin−1

× Srin
)
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r = 1, ..., R (15)

the probability of the sequence of choices i1, ..., in over the n consecutive days t1, .., tn
is:

P ri1...in = P (Ir (t1) = i1, ...,I
r (tn) = in) = P

(
Sri1 × ...× S

r
in

)
r = 1, ..., R (16)

where × denotes Cartesian product and the sets are de�ned by:

Srik =
{
urik (tk) ≥ urj (tk) , j = 1, ..., Jr, j 6= ik

}
⊂ RJ

r

k = 1, ..., n r = 1, ..., R (17)

As the next section will show, transition probabilities are of particular interest in assign-
ment processes. Computation depends on the stochastic process assumed for the random
terms. In the case of assumption A2a, the one of the bi-extremal distribution, Delle Site
and Salucci (2015) have shown that it is possible to express transition choice probabilities in
analytic form. In the case of assumption A2b, the one of multivariate normal, computation
requires simulation, i.e. drawing from the distribution of the random terms (see Delle Site
and Salucci, 2013, for a review on computation of transition probabilities).

3 Assignment process and �xed points

In deterministic assignment processes, path �ows F ri are given by the product of the OD
demand qr by the path probability P ri . This can be justi�ed in two ways. With individual-
speci�c random terms we have a continuum of individuals. Thus, probabilities are intepreted
as proportions. Alternatively, the number of individuals using a path is regarded as a
random variable given by the sum of qr Bernoulli variables with success probability equal to
P ri . The expected value of this random variable is the OD demand qr times the probability
P ri .

Using the same argument, we can de�ne the transition �ows F rin−1in
relating to day tn−1

and tn as the product of qr by the transition probability P rin−1in
. Transition �ows represent

the �ows of shifters and non shifters.
The following lemma provides the formulas for iterative computation of path �ows on

the basis of the underlying choice process.

Lemma. Under assumptions A1, A2a or A2b, and A3, path �ows at day tn are given by:

F rin = qr · P rin =

11



=

Jr∑
in−1=1

F rin−1in = qr ·
Jr∑

in−1=1

P rin−1in

in = 1, ..., Jr r = 1, ..., R (18)

where:

P rin = P(Srin)

Srin =
{
vrin (tn) + εrin (tn) ≥ vrj (tn) + εrj (tn) , j = 1, ..., Jr, j 6= in

}
⊂ RJ

r
(19)

and

P rin−1in = P(Srin−1
× Srin)

Srin−1
=
{
vrin−1

(tn−1) + εrin−1
(tn−1) ≥ vrj (tn−1) + εrj (tn−1) , j = 1, ..., Jr, j 6= in−1

}
⊂ RJ

r

(20)

Proof. See Appendix 2.

The lemma provides path �ows in terms of transition �ows. A direct consequence of
the lemma is the following invariance property: under assumptions A1, A2a or A2b, and
A3, day-to-day correlation is irrelevant to path �ows at any day, while it is relevant to
transition �ows.

Now consider the stationary choice process. Let P ri
(
F̄ ri ; i = 1, ..Jr; r = 1, ..R

)
denote

the probability as function of path �ows. The following proposition provides the formulas
of the associated �ows and transition �ows.

Proposition 1. Under assumptions A1, A2a or A2b, and A3, the path �ows associated

with the stationary choice process are given by:

F̄ ri = qr · P ri
(
F̄ ri ; i = 1, ..Jr; r = 1, ..R

)
=

=
Jr∑
k=1

F̄ rki = qr ·
Jr∑
k=1

P rki
(
F̄ ri ; i = 1, ..Jr; r = 1, ..R

)
i = 1, ..., Jr r = 1, ..., R (21)

Proof. See Appendix 2.
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A direct consequence of proposition 1 is the following invariance property: under as-
sumptions A1, A2a or A2b, and A3, day-to-day correlation is irrelevant to path �ows
associated with the stationary choice process, while it is relevant to transition �ows.

Notice that the lemma and proposition 1 can be extended to sequences of more than
two days.

Flows and transition �ows of the stationary choice process are the solutions of the �xed-
point problem represented by eqns (21). Flows F̄ ri , i = 1, ..., Jr, r = 1, ..., R, are those of
classical SUE (Daganzo and She�, 1977). Therefore, we have the following two corollaries.

Corollary 1. The solutions to the logit SUE are the �xed point states of a day-to-day

deterministic assignment process under assumptions A1, A2a and A3.

Corollary 1 speci�es that the random term updating process from which logit SUE is
derived is the stationary extremal process of eqns (9).

Corollary 2. The solutions of the probit SUE are the �xed point states of a day-to-day

deterministic assignment process under assumptions A1, A2b and A3.

Corollary 2 speci�es that the random term updating process from which probit SUE is
derived is the stationary Gaussian vector process of eqns (12).

Proposition 1 and its corollaries have a signi�cant implication in terms of how logit and
probit SUE are intepreted. The condition of the network associated with the stationary
choice process is one where, at macro level, the observed route �ows do not change across
days, while, at micro level, individuals change route. The micro-shifts are quanti�ed by the
transition �ows over two consecutive days F̄ rki. The following propositions characterise the
transition �ows at SUE.

Consider the matrix of transition �ows F̄ rki for an OD pair r. We have the paths chosen
the day before on the rows, and the paths chosen the day after on the columns.

Proposition 2. Under assumptions A1, A2a or A2b, and A3, at SUE the matrix of tran-

sition �ows is symmetric:

F̄ rki = F̄ rik k, i = 1, ..., Jr, k 6= i, r = 1, ..., R (22)

Proof. See Appendix 2.

Proposition 2 implies that the number of shifters from path k to path i equals the
number of shifters from path i to path k.

Of particular interest are the cases of the following assumptions.

Assumption A2c - Random term updating model, unchanged case. The stochastic

process of random terms over consecutive days satis�es assumption A2a or A2b and, in

addition, the vectors of the random terms are unchanged across days, i.e.:

εri (t1) = ... = εri (tn) i = 1, ..., Jr, r = 1, ..., R (23)
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Proposition 3. Under assumptions A1, A2c and A3, at SUE the transition �ows satisfy:

F̄ rki = 0 k, i = 1, ..., Jr, k 6= i, r = 1, ..., R (24)

Proof. See Appendix 2.

Proposition 3 states that if random terms are unchanged across days, at SUE no user
changes route.

Assumption A2d - Random term updating model, independence case. The

stochastic process of random terms over consecutive days satis�es assumption A2a or A2b

and, in addition, the vectors of the random terms are independent across days.

Proposition 4. Under assumptions A1, A2d and A3, at SUE the transition �ows satisfy:

F̄ rki = qr · P rk
(
F̄ ri ; i = 1, ..Jr; r = 1, ..R

)
· P ri

(
F̄ ri ; i = 1, ..Jr; r = 1, ..R

)
k, i = 1, ..., Jr, r = 1, ..., R (25)

Proof. See Appendix 2.

Proposition 4 provides the expressions of the transition �ows at SUE under the inde-
pendence assumption of the classical framework of tra�c assignment processes.

4 Illustrative examples

4.1 Two-link network

The �rst example relates to a two-link network representing a town centre route and a
bypass route (Figure 8). We assume a total demand q=1200 vehicles/hour. Bureau of
Public Roads (BPR) volume-delay functions derived empirically for similar routes are used.
The functions, in hours, are:

T1 = 0.057 ·
[
1 + (F1/800)5.2

]
(26)

for the town-centre route, and:

T2 = 0.045 ·
[
1 + 0.68 (F2/1230)4.6

]
(27)

for the bypass route.
For route choice, we consider a random utility model with systematic utility depending

on travel time only. The travel time coe�cient is βT = −0.10796, with travel time in
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minutes, based on the estimation of a binomial logit route choice model which has used
stated preference data (Delle Site and Filippi, 2011).

Table 1 shows the values at SUE of probabilities P̄1 and P̄2, path �ows F̄1 and F̄2, and
travel times in the two cases of a logit and a probit route choice model. As in the logit, the
probit model that has been used considers independence of the random terms across path
alternatives. The variance of the random terms in the probit is equal to unity. The values
in the table are obtained by solving the �xed point problem of eqns (21) with respect to
the path �ows. In the probit, we have kept unchanged the value of the time coe�cient to
enable comparison between the two distributions of the random terms.

For logit, probabilities are computed using the closed-form expressions:

P̄i =
evi

ev1 + ev2
i = 1, 2 (28)

For probit, probabilities are also computed analytically using the expressions that hold
in the binomial case (Ben-Akiva and Lerman, 1985):

P̄i = Φ

(
vi − vj√

2

)
i, j = 1, 2 i 6= j (29)

where Φ is the cumulative standard normal distribution.
The values of transition �ows at SUE depend, according to eqns (21), on the marginal

distribution of the random terms over two consecutive days.
In the logit case, where the random term of each alternative follows a bi-extremal

distribution, it is possible to use the analytic expressions of transition probabilities that are
found in Delle Site and Salucci (2015; eqns 44 and 45). In the present case, where systematic
utilities are unchanged across choices, these reduce to the following simple expressions:

P̄12 = (1− φ) · ev1

ev1 + ev2
· ev2

ev1 + ev2
(30)

P̄11 = P̄1 − P̄12 (31)

Figure 9 shows the linear variation of the transition �ows with the parameter φ con-
trolling day-to-day correlation of the bi-extremal distribution. The �gure shows the values
of F̄11, representing the number of individuals who stay on the town centre route, F̄22,
representing the number of individuals who stay on the bypass route, and F̄12, representing
the number of individuals who shift from the town-centre route to the bypass route which
equals, due to the symmetry property of proposition 2, the number F̄21 of individuals who
shift from the bypass route to the town-centre route.

The number of shifters F̄12 equals the product q · P̄1 · P̄2 = 1200 · 0.468 · 0.532 = 299
vehicles/hour in the independence case (correlation parameter equal to zero), and decreases
to zero in the perfect correlation case (correlation parameter equal to unity and unchanged
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random terms), according to propositions 3 and 4. For any value of the parameter φ control-
ling the day-to-day correlation, the sum F̄11 + F̄12 equals the �ow F̄1 = 562 vehicles/hour
that is found at any day on route 1, while F̄22 + F̄21 equals the �ow F̄2 = 638 vehicles/hour
that is found at any day on route 2.

In the probit case, transition probabilities need to be computed using simulation. The
frequency estimator is used:

P̄ki ∼=
1

D
·
D∑
d=1

I
(
[ε1d(tn−1), ε2d(tn−1), ε1d(tn), ε2d(tn)]′ ∈ Sk × Si

)
k, i = 1, 2 (32)

where I(·) is the indicator function, d the draw index and D the number of draws (106

in the case here). This estimator is referred to by Train (2003) as accept-reject simulator
because it equals the proportion of draws that are �accept� with respect to the transition
regions of the 4-dimensional Euclidean space R4 of the day-before and day-after random
terms. The frequency estimator is minimum variance unbiased and strongly consistent
(Lerman and Manski, 1981).

Figure 10 shows the variation of the transition �ows with the correlation coe�cient ρ
in the probit case. Notice the non-linear relationship. The same comments as in the logit
apply as to the symmetry of the transition �ows and the values taken in the independence
and the unchanged cases.

4.2 Five-link network

The second example relates to the �ve-link network whose topology is shown in the graph
of Figure 11. The network is found in Cascetta (2009). Its topology is the one of the Braess
network (Braess, 1969; Braess et al., 2005). The network includes four nodes, �ve directed
links and three OD pairs. The link-path incidence relationship is shown in Table 2. There is
a total of six paths. OD pair (1,4) has three paths, OD pair (2,4) two paths, OD pair (3,4)
one path. The OD demand �ows (in vehicles/hour) are q14 = 1000, q24 = 1500, q34 = 800.
The following BPR volume-delay functions (time in minutes, �ow in vehicles/hour) are
assumed:

Ta = T0 · [1 + a · (za/c)γ ] (33)

The values of the coe�cients are in Table 3.
The MSA algorithm is used to �nd travel times and �ows at SUE. Two route choice

models are considered: one logit and one probit. In both the logit and the probit model
the value of the time coe�cient βT is -0.03334 (time in minutes). While in the logit model
the random terms are i.i.d. across alternatives, in the probit model we assumed the inter-
alternative variance-covariance matrix shown in Table 4. This is because probit o�ers the
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opportunity to model correlation of overlapping paths (path 1 is overlapping with path 2
due to the common link 1, path 2 is overlapping with path 3 due to the common link 5).

The link travel times and �ows at SUE are in Table 5. The path travel times, probabil-
ities and �ows at SUE are in Table 6. For probit, probabilities are computed by simulation
using the frequency estimator. Draws for the random terms of OD pair (1,4), which in-
cludes the three inter-correlated paths, are obtained based on the Cholesky decomposition
method recalled in section 2.2.2 (Scheuer and Stoller, 1962).

The transitions at SUE for the OD pair (1,4) are illustrated in the transition graph of
Figure 12. The nodes in the transition graph denote the paths of the OD pair. The links
denote the transitions from one path to another. The loops denote the permanence on the
path. The transition �ow matrix is shown in Table 7 for logit (φ = 0.5), and in Table 8 for
probit (within-alternative day-to-day correlation ρ equal to 0.5). Transition probabilities
are computed for both logit and probit by simulation using the frequency estimator on the
basis of, respectively, eqns (9) and eqns (12). The symmetry property of the transition �ows
at SUE, which is a theoretical property based on proposition 2, is con�rmed numerically.

5 Conclusion

The framework of deterministic assignment processes that the paper has outlined builds
on three pillars: the deterministic sequence of systematic utilities, the stochastic process of
random terms and the resulting stochastic process of choice. Day-to-day correlation of the
random terms provides the foundation for realistic representation of persistence of habits
and unobservables that characterises route choice behaviour. SUE are shown to be the �xed
point states of the stationary choice process.

The paper has provided a novel interpretation of classical SUE based on the explicit
treatment of transition �ows. At SUE, the observed path �ows do not change, but day-to-
day shifts between routes occur. Only if random terms are unchanged across days, SUE can
be seen as a condition of �rest� at both the macro and the micro level. Moreover, transition
�ows at SUE satisfy a symmetry condition.

The circumstance that path �ows that are obtained at any day and those at SUE are
invariant with the day-to-day correlation of the random terms has a remarkable implica-
tion related to the validity of the results in the literature on the stability of deterministic
assignment processes. The implicit Markovian assumption for the choice process and the in-
dependence assumption characterising the classical framework are irrelevant to the stability
results which appear to have more general validity.

The framework provided is admittedly in an initial stage when compared with the
behavioural assumptions developed for deterministic assignment processes. Thus, several
issues deserve further research.

One relates to the simple learning �lter of the systematic utility updating model. This
has been restricted to one past day only for consistency with the random term updating

17



model which we wanted to maintain simple for convenience. From the literature reviewed,
we could not �nd ready solutions to the problem consisting in the identi�cation of autore-
gressive structures that have higher order in terms of past days and, at the same time, are
able to save stationarity (i.e. constancy of the one-day, two-day ... marginal probability
distributions). Solving this problem requires a statistical investigation which is left for
future research.

The learning �lter should also be addressed to accommodate the presence of ATIS
providing the users with information on current travel times (see Bifulco et al., 2016, for a
recent contribution). An attendant development is the extension to multiple user classes, to
account for heterogeneity in the level of knowledge of network travel time conditions and/or
in the marginal disutility of travel time. Still for the systematic utility updating model, it
might be possible to consider inertia e�ects in the form of state dependence (as in Cascetta
and Cantarella, 1991), a behaviour where individuals pay a psychological extra-cost if they
change route. This extension appears not trivial being a case where the invariance property
related to the day-to-day correlation proved in the paper does not hold.

Additionally, the random term updating model. The undoubtedly unrealistic behaviour
postulated in the extremal process, based on the maximum operator, is essentially moti-
vated by the desire to justify the use of logit SUE in network analysis, with the related
advantages. The behaviour postulated in the Gaussian vector process appears more realis-
tic since it is based on the additive structure of the autoregression. Future research might
investigate the stationary processes associated with the random terms of other path choice
models, such as the (multiplicative) closed-form weibit model (Castillo et., 2008), based on
independent heteroschedastic Weibull distributions with variance dependent on path cost,
and the (additive) gammit model (Cantarella and Binetti, 2002), based on the multivariate
gamma function, which provides the same �exibility in the correlation pattern as the probit.

The framework developed can be transferred, with proper modi�cations, from route
choice to the choice of the transport mode (a mode-choice version of SUE is dealt with in
Cantarella et al., 2015).

Appendix 1. Classical framework of deterministic assignment

processes.

This appendix aims to make evident that the classical framework of deterministic assign-
ment processes builds on the formulation of a choice updating process with an implicit
Markovian assumption. Also, we show that the framework, in its most frequent formula-
tion, implies day-to-day independence of the random terms.

First, the framework assumes for the choice updating process the following equality (ref-
erence is made to section 1.3 �Users' choice behavior modeling� in Cantarella and Cascetta,
1995):
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Pin =
∑
in−1

Pin−1 · Pin/in−1
(34)

where Pin is the probability of choosing path in at day tn, Pin−1the probability of
choosing path in−1 at day tn−1, and Pin/in−1

the probability of choosing path in conditional
on having chosen path in−1 the previous day.

The equality is simply an application of the law of total probability. With eqn (34) only,
the probability distribution of the path choice over a sequence of days remains unspeci�ed.
As elucidated by Watling and Cantarella (2013; section 2.2 �Representation of state and
distribution�), to derive the probability of the sequence of choices, appeal is made to a
Markovian assumption whereby (�rst-order Markov chain):

Pin/in−1
= Pin/i1...in−1

(35)

where Pin/i1...in−1
is the probability of choosing path in conditional on having chosen

path i1 the �rst day,..., path in−1 at day tn−1.
Eqn (35) implies the following factoring property for the sequence probability (theorem

1.1.1 in Norris, 1997):

Pi1i2...in−1in = Pi1 · Pi2/i1 · ... · Pin−1/in−2
· Pin/in−1

(36)

where Pi1i2...in−1in is the probability of choosing path i1 the �rst day, path i2 at day t2,
... , path in−1 at day tn−1, and path in at day tn; Pi1 the probability of choosing i1 the
�rst day; and with obvious meaning of the other symbols.

Second, the framework is usually formulated according to the assumption that condi-
tional probabilities are independent of the path chosen in the previous day:

Pin/in−1
= Pin (37)

The assumption in eqn (37) holds if random terms are day-to-day independent and if
there is no path dependence of the systematic utilities5.

The assumption in eqn (37) yields for the probability of the sequence (in−1,in):

Pin−1in = Pin−1 · Pin/in−1
= Pin−1 · Pin (38)

Eqn (38) expresses the transition probability as the product of the probability the day
before times the probability the day after.

5This excludes state-dependent route choice models whereby the currently used path is assigned extra-
utility.
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Appendix 2. Proofs.

Lemma

Consider day 1. Systematic utilities are, by assumption, given (they can be those of travel
times at zero �ows). Path choice probabilities at day 1 can be computed on the basis of the
given systematic utilities and the multivariate marginal distribution of the random terms.
Path �ows, and associated travel times, follow.

Now consider day 2. Choices are made on the basis of systematic utilities which depend
on the travel times of day 1. Path choice probabilities at day 2 can be computed on the basis
of the given systematic utilities and the multivariate marginal distribution of the random
terms. In fact, only the random terms of day 2 enter the computation of probabilities at
day 2, random terms at day 1 are irrelevant, as it is evident by the de�nition of the set
Srinof eqn (19). The argument applies to any following day. This proves the �rst equality
of eqns (18).

The expression of path �ows in terms of transition �ows is consequence of the law of
total probability applied to the choice process. In the light of the �rst part of proposition
1, the systematic utilities are known up to day tn and the transition �ows depend on the
marginal distribution of the random terms over the two days tn−1 and tn, as it is evident
by the de�nitions of the sets Srin−1

and Srin . �

Proposition 1.

This follows from the lemma and application of the de�nition of strict stationarity to the
choice process. �

Proposition 2.

We use the notation:

F rik = qr · P rki(F̄ ri ; i = 1, ..Jr; r = 1, ..R) = qr · P̄ rki (39)

Consider the transition probability:

P̄ rki = P (Ir (tn−1) = kn−1, I
r (tn) = in) = P(Srkn−1

× Srin) (40)

This is given by the following multiple integral in the R2·Jr
space:

P̄ rki =

∫
...

∫
Sr
kn−1

×Sr
in

f [ε (tn−1) , ε (tn)] dε (tn) dε (tn−1) (41)

which can be computed as iterated integral as follows:
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P̄ rki =

∫
...

∫
Sr
kn−1

[∫
...

∫
Sr
in

f [ε (tn−1) , ε (tn)] dε (tn)

]
dε (tn−1) (42)

where ε (tn−1) = [εj (tn−1) , j = 1, ..Jr]′, ε (tn) = [εj (tn) , j = 1, ..Jr]′, f [·] is the p.d.f..
Consider now the transition probability:

P̄ rik = P (Ir (tn−1) = in−1, I
r (tn) = kn) = P(Srin−1

× Srkn)

which is given by the following iterated integral:

P̄ rik =

∫
...

∫
Sr
in−1

[∫
...

∫
Sr
kn

f [ε (tn−1) , ε (tn)] dε (tn)

]
dε (tn−1) (43)

By Fubini's theorem (theorem 5.2.2 in Athreya and Lahiri, 2010) we can exchange the
order of integration and get:

P̄ rik =

∫
...

∫
Sr
kn

[∫
...

∫
Sr
in−1

f [ε (tn−1) , ε (tn)] dε (tn−1)

]
dε (tn) (44)

We shall prove that P̄ rki = P̄ rik by proving that the integral of eqn (42) and the integral
of eqn (44) have the same value.

Recall the following assumptions of the stationary state. First, the marginal p.d.f. at
day tn−1:

f [ε (tn−1)] =

∫
...

∫
RJr

f [ε (tn−1) , ε (tn)] dε (tn) (45)

and the marginal p.d.f. at day tn:

f [ε (tn)] =

∫
...

∫
RJr

f [ε (tn−1) , ε (tn)] dε (tn−1) (46)

have the same functional form.
Second, the systematic utilities of each alternative are constant across days, which

implies that Skn−1and Sknare identical sets, and also Sin−1and Sinare identical sets. The
consequence is that the marginal p.d.f. at day tn−1 when i is chosen at day tn:

f,i [ε (tn−1)] =

∫
...

∫
Sr
in

f [ε (tn−1) , ε (tn)] dε (tn) (47)

and the marginal p.d.f. at day tn when i is chosen at day tn−1:

fi, [ε (tn)] =

∫
...

∫
Sr
in−1

f [ε (tn−1) , ε (tn)] dε (tn−1) (48)
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have the same functional form.
Thus, the integral of eqn (42) which provides P̄ rki can be re-written as:

P̄ rki =

∫
...

∫
Sr
kn−1

f,i [ε (tn−1)] dε (tn−1) (49)

Also, the integral of eqn (44) which provides P̄ rik can be re-written as:

P̄ rik =

∫
...

∫
Sr
kn

fi, [ε (tn)] dε (tn) (50)

Since the only di�erence is in the integration variables, the two integrals of eqn (49)
and (50) have the same value. �

Proposition 3.

Under assumption A2c, the space of the random terms where the transition probabilities
are computed reduces from dimension 2 · Jr to Jr. We have Srk ∩ Sri = Ø since, for each
vector of random terms, one alternative only is selected. Therefore, P̄ rki = 0, k 6= i. �

Proposition 4.

Under assumption A2d the random terms are independent, therefore, the transition proba-
bility from k to i equals the probability of choosing k the day before times the probability
of choosing i the day after. �
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Table 1: Probabilities, �ows and travel times at SUE
logit probit
town centre route bypass route town centre route bypass route

probability 0.468 0.532 0.465 0.535
�ow (vehicles/hour) 562 638 558 642
travel time (minutes) 3.96 2.79 3.95 2.79

Table 2: Link-path incidence relationship
OD pair path link sequence
(1,4) 1 1-4

2 1-3-5
3 2-5

(2,4) 4 3-5
5 4

(3,4) 6 5

Table 3: Coe�cients of the volume-delay functions
link T0 a c γ

1 10 2 1000 4
2 22 2 1000 4
3 13 2 2500 4
4 20 2 1000 4
5 11 2 3300 4

Table 4: Probit case: one-day variance-covariance matrix for OD pair (1,4)
path 1 2 3
1 1 0.2 0
2 0.2 1 0.2
3 0 0.2 1
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Table 5: Link travel times and �ows at SUE
logit probit
travel time �ow travel time �ow

link (minutes) (vehicles/hour) (minutes) (vehicles/hour)
1 12.6 599 12.2 579
2 23.1 401 23.4 421
3 14.5 1232 14.5 1221
4 42.6 867 41.6 858
5 17.5 2433 17.6 2442

Table 6: Path travel times, probabilities and �ows at SUE
logit probit
travel time probability �ow travel time probability �ow

path (minutes) (vehicles/hour) (minutes) (vehicles/hour)
1 55.1 0.247 247 53.9 0.241 241
2 44.6 0.351 352 44.3 0.338 338
3 40.6 0.401 401 41.0 0.421 421
4 32.0 0.587 881 32.1 0.590 884
5 42.6 0.413 619 41.6 0.410 616
6 17.5 1 800 17.6 1 800

Table 7: Transition �ows (in vehicles/hour) for OD pair (1,4) in logit SUE
path 1 2 3
1 154 43 50
2 43 238 70
3 50 70 281

Table 8: Transition �ows (in vehicles/hour) for OD pair (1,4) in probit SUE
path 1 2 3
1 111 60 70
2 60 181 97
3 70 97 254
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Figure 7: Univariate Gaussian process: ρ = 1

32



 

Figure 8: Two-link network
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Figure 10: Transition �ows in probit SUE
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