

Teaching Staff

Head instructor
Prof. Antonino LONGO MINNOLO - antonino.longo@unicusano.it

Introduction

1. Objective of the course :
The Software Engineering Course aims to provide the student with a good
knowledge of the principles governing software design. The course proposes the
basic concepts relating to the software development process, with particular
reference to object-oriented software. Furthermore, the educational objective of
the Course is to provide the student with detailed knowledge of the techniques for
gathering requirements, drafting specifications, planning, design, implementation,
testing, integration and maintenance of the software. The Etivities associated with
the Course develop the skills necessary to design and develop software products
through the use of suitable software engineering environments.

Objectives

2. Course Structure:
- Describe the main requirements collection techniques
- Illustrate the main methodologies for drafting the specifications
- Explain the main software planning and design paradigms
- Illustrate techniques for implementing, testing, integrating and maintaining a

software project

Code: ING/INF05 Credits: 9
Matter: Software Engineering
Main language of instruction: Italian
Other language of instruction: English

Competencies:
A. Knowledge and understanding
At the end of the course, the student will have knowledge of the fundamental
concepts and techniques for the collection of requirements, drafting of
specifications, planning, design, implementation, integration and maintenance of a
software product. Furthermore, the student will acquire a good knowledge of UML
(Unified Modeling Language) and of the fundamental aspects of the software
development process (with particular reference to object-oriented software). In
addition, through the Etivities, students will acquire the ability to deal with the
analysis and discussion of concrete case studies.
B. Applying knowledge and understanding
The student will be able to collect and formalize the system requirements, to design
even a complex software system and to estimate costs and times; he will also be
able to correctly size the various components of a software system and to use UML
as a modeling language together with the most common design aid tools.
The Etivities foresee the application of theoretical knowledge to practical problems,
such as analysis and discussions on case studies, and group exercises oriented to the
implementation of methodologies for software development, to be carried out with
the use of suitable development environments and the preparation of a project
carried out independently.
C. Making judgements
The student will be able to identify the correct methodologies for the design,
implementation and evaluation of computer systems architectures, analyzing
various case studies; he will also be able to analyze the data, even limited and
incomplete, at his disposal and propose adequate solutions for new problems by
integrating the knowledge acquired during the course. Finally, the student will be
able to carry out bibliographic searches, to analyze and interpret the relevant
sources, in order to analyze the strengths and weaknesses of the proposed
solutions, implement risk-driven choices in the planning and implementation of the
project and model an IT system from requirements up to to implementation, testing
and configuration / installation.
D. Communication skills
The student will be able to describe and hold conversations on issues related to the
design and implementation and evaluation of the software product, and to the
resolution of typical life cycle management problems, using appropriate
terminology.
E. Learning skills.
At the end of the course, the student will be able to independently learn the specific
problems relating to the design and implementation of the software.

Syllabus

3. Programme of the course:

Subject 1 - Basic concepts and definitions of Software Engineering
Introduction to Software Engineering, Project concepts, activity, resource, task,
work product, system, model, document, objectives (goal), requirements,
constraints, notations, methods and methodologies. Basic definitions: software
products, general characteristics of software products. The qualities of the software.
The main stages of development - requirements collection, requirements analysis,
system design, executive or object design, implementation, project management,
testing, software life cycle. Processes for software development: waterfall model,
incremental development; iterative / evolutionary model, prototype model, spiral
model, agile model.

Subject 2 – Analysis and specification requirements
Introduction to the collection of requirements. Fundamental concepts: functional
requirements, non-functional requirements and pseudo-requirements, levels of
description. Main attributes of the specifications (correctness, completeness).
Classification of requirements collection activities. Requirements analysis.
Identification of actors, scenarios, use cases, relationships between actors and use
cases. Identification of the objects of analysis, identification of non-functional
requirements. Analysis models - functional, object, dynamic. Requirements analysis
and documentation exercise.

Subject 3 – System Design
System design. Introduction, concepts and main activities. Software project. Project
methods: top-down, bottom-up approach, structured methods, functional and
object oriented strategies. Project documentation. Project quality parameters:
cohesion, coupling. Logical architecture project. Principles of object-oriented
analysis and design: Classes, Objects, Overloading, Information hiding, Inheritance,
Abstract Classes, Interfaces, Dynamic Binding, Exceptions. Exercise for defining and
documenting system design.

Subject 4 – Software modeling and design with UML
Generalities on UML (Unified Modeling Language). UML and life cycle. Model
requirements with use cases. Diagrams of classes and objects. Sequence diagrams.
State diagram. Activity diagram. Components and deployment diagram. Object-
oriented modeling.

Subject 5 - Introduction to the Java language
Introduction to the Java language: JVM and JDK. Fundamentals of Object Oriented
Programming. The ECLIPSE development environment. Characteristic elements of
the Java language. The standard Java libraries. Handling of exceptions. - Handling of
errors. Documentation with JavaDoc. I / O in Java. File management. Multithread
programming. Interaction with the File System. Networking in Java. Connection to
databases: JDBC. Run unit tests with JUnit.

Subject 6 - Verification, validation and testing
The quality control of software products: verification and validation. Introduction to
testing; quality control techniques; failure prevention techniques; techniques for
fault recognition; fault tolerance techniques. Test concepts: component, failure,
error, malfunction, test case, test stub / driver, fix. Testing activities: component
inspection; unit testing; integration and system tests. Test planning, test
documentation. Exercise on defining, planning and documenting test cases. Run unit
tests with JUnit.

Subject 7 - Project management and Design Patterns
Project Management. Fundamental elements of project management Fundamental
characteristics of the project. Activities' (ordinary, summary, pivotal). Activity
structure. Relationships between activities. The resources (the timetable, the costs).
Fixed costs of the project. Project reports. Design patterns. Project management
tutorial.

Subject 8 - Agile Design
Agile principles. Agile methods. Scrum methodology. Scrum Team: the Product
Owner, the Development Team, the Scrum Master. Scrum Events: Sprint, Sprint
Planning, Daily Scrum, Sprint Review, Sprint Retrospective. The Scrum Artifacts:
Product Backlog, Sprint Backlog, Increment. Manage projects with Scrum.

Subject 9 - Software development management
Software configuration management. Configuration item, version, configurations,
repository. Use of versioning tools (CVS, SVN, Git). Build, release and branch
management.

Evaluation system and criteria
The exam consists in carrying out a written test aimed at ascertaining the ability to
analyze and rework the concepts acquired and a series of activities (e-tivity) carried
out during the course in virtual classrooms.

The expected learning outcomes about the knowledge of the subject and the ability
to apply them are assessed by the written test, while the communication skills, the
ability to draw conclusions and the ability to self-learn are assessed in itinere
through e-tivities.

Bibliography and resources

4. Materials to consult:
Notes written by the instructor are available in English. The notes cover the course
contents and examination programme.

5. Recommended bibliography:
Suggested readings are:

- I. Sommerville Ingegneria del software 8/Ed. 2007 pp. 848 ISBN
9788871923543

- J. Arlow, I. Neustadt. UML2 e Unified Process - analisi e progettazione Object
Oriented, Addison-Wesley

- C. De Sio, Cesari (2014) - Manuale di Java 8. Programmazione orientata agli
oggetti con Java standard edition 8 – 1° Edizione - Hoepli – ISBN 8820362910

- Herbert Schildt – Java la guida completa – McGrawill – ISBN 9788838667664

